完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Yi-Tingen_US
dc.contributor.authorSun, Edward W.en_US
dc.contributor.authorYu, Min-Tehen_US
dc.date.accessioned2019-04-02T05:58:42Z-
dc.date.available2019-04-02T05:58:42Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn0927-7099en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10614-017-9711-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/148007-
dc.description.abstractDynamic risk management requires the risk measures to adapt to information at different times, such that this dynamic framework takes into account the time consistency of risk measures interrelated at different times. Therefore, dynamic risk measures for processes can be identified as risk measures for random variables on an appropriate product space. This paper proposes a wavelet feature decomposing algorithm based on the discrete wavelet transform that optimally decomposes the time-consistent features from the product space. This approach allows us to generalize the multiple-stage risk measures of value at risk and conditional value at risk for the feature-decomposed processes, and implement them into portfolio selection using high-frequency data of U.S. DJIA stocks. The overall empirical results confirm that our proposed method significantly improves the performance of dynamic risk assessment and portfolio selection.en_US
dc.language.isoen_USen_US
dc.subjectBig financial dataen_US
dc.subjectDynamic risk measuresen_US
dc.subjectFeature engineeringen_US
dc.subjectPortfolio optimizationen_US
dc.subjectTime consistencyen_US
dc.subjectWaveleten_US
dc.titleRisk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Tradingen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10614-017-9711-7en_US
dc.identifier.journalCOMPUTATIONAL ECONOMICSen_US
dc.citation.volume52en_US
dc.citation.spage653en_US
dc.citation.epage684en_US
dc.contributor.department資訊學院zh_TW
dc.contributor.departmentCollege of Computer Scienceen_US
dc.identifier.wosnumberWOS:000441531500016en_US
dc.citation.woscount1en_US
顯示於類別:期刊論文