完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, Wu-Shungen_US
dc.contributor.authorChao, Wei-Siangen_US
dc.contributor.authorTsubokura, Makotoen_US
dc.contributor.authorLi, Chung-Gangen_US
dc.contributor.authorWang, Wei-Hsiangen_US
dc.date.accessioned2019-04-02T05:58:42Z-
dc.date.available2019-04-02T05:58:42Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn0735-1933en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.icheatmasstransfer.2018.05.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/148009-
dc.description.abstractEffects of the mainstream boundary layer thickness and the turbulence intensity on film cooling under low Reynolds number conditions are studied in this work by the direct numerical simulation (DNS). In other to solve low-speed compressible flow problems, several methods of Roe scheme, preconditioning, dual time stepping, and LUSGS are adopted to solve governing equations. Results reveal that a horseshoe vortex appears with a thicker mainstream boundary layer, and thus the lateral coverage of the coolant fluid has increased significantly. In addition, the existence of turbulence intensity eliminates the blow-off phenomenon, which happens in a thin mainstream boundary layer condition and enhances the film cooling effectiveness.en_US
dc.language.isoen_USen_US
dc.subjectFilm coolingen_US
dc.subjectDirect numerical simulationen_US
dc.subjectBoundary layer thicknessen_US
dc.subjectTurbulence intensityen_US
dc.titleInvestigation of boundary layer thickness and turbulence intensity on film cooling with a fan-shaped hole by direct numerical simulationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.icheatmasstransfer.2018.05.017en_US
dc.identifier.journalINTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFERen_US
dc.citation.volume96en_US
dc.citation.spage12en_US
dc.citation.epage19en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000441683300003en_US
dc.citation.woscount2en_US
顯示於類別:期刊論文