Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2019-04-02T05:58:42Z-
dc.date.available2019-04-02T05:58:42Z-
dc.date.issued2018-10-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2018.05.021en_US
dc.identifier.urihttp://hdl.handle.net/11536/148010-
dc.description.abstractFor an n-by-n matrix A, let w(A) and parallel to A parallel to denote its numerical radius and operator norm, respectively. The following three inequalities, each a strengthening of w(A) <= parallel to A parallel to, are known to hold: w(A)(2) <= (parallel to A parallel to(2) + w(A(2)))/2, w(A) <= (parallel to A parallel to + parallel to A(2)parallel to(1/2))/2, and w(A) <= (parallel to A parallel to + w(Delta(t)(A)))/2 (0 <= t <= 1), where Delta(t)(A) is the generalized Aluthge transform of A. In this paper, we derive necessary and sufficient conditions in terms of the operator structure of A for which the inequalities become equalities. (C) 2018 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectNumerical radiusen_US
dc.subjectOperator normen_US
dc.subjectGeneralized Aluthge transformen_US
dc.titleEquality of three numerical radius inequalitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2018.05.021en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume554en_US
dc.citation.spage51en_US
dc.citation.epage67en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000441689200004en_US
dc.citation.woscount0en_US
Appears in Collections:Articles