Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, T-Sen_US
dc.contributor.authorTseluiko, D.en_US
dc.contributor.authorBlyth, M. G.en_US
dc.contributor.authorKalliadasis, S.en_US
dc.date.accessioned2019-04-02T05:58:36Z-
dc.date.available2019-04-02T05:58:36Z-
dc.date.issued2018-12-01en_US
dc.identifier.issn0893-9659en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.aml.2018.06.034en_US
dc.identifier.urihttp://hdl.handle.net/11536/148029-
dc.description.abstractA numerical continuation method is developed to follow time-periodic travelling wave solutions of both local and non-local evolution partial differential equations (PDEs). It is found that the equation for the speed of the moving coordinate can be derived naturally from the governing equations together with a condition that breaks the translational symmetry. The derived system of equations allows one to follow the branch of travelling-wave solutions as well as solutions that are time-periodic in a frame of reference travelling at a constant speed. Finally, we show as an example the bifurcation and stability analysis of single and double-pulse waves in long-wave models of electrified falling films. (C) 2018 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNumerical continuationen_US
dc.subjectEvolution equationen_US
dc.subjectLong-wave modelen_US
dc.titleContinuation methods for time-periodic travelling-wave solutions to evolution equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aml.2018.06.034en_US
dc.identifier.journalAPPLIED MATHEMATICS LETTERSen_US
dc.citation.volume86en_US
dc.citation.spage291en_US
dc.citation.epage297en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000442066500042en_US
dc.citation.woscount0en_US
Appears in Collections:Articles