Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonchenko, Sergeyen_US
dc.contributor.authorLi, Ming-Chiaen_US
dc.contributor.authorMalkin, Mikhailen_US
dc.date.accessioned2019-04-02T05:58:38Z-
dc.date.available2019-04-02T05:58:38Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1468-9367en_US
dc.identifier.urihttp://dx.doi.org/10.1080/14689367.2017.1381232en_US
dc.identifier.urihttp://hdl.handle.net/11536/148043-
dc.description.abstractConsider (m + 1)-dimensional, m 1, diffeomorphisms that have a saddle fixed point O with m-dimensional stable manifold W-s(O), one-dimensional unstable manifold W-u(O), and with the saddle value sigma different from 1. We assume that W-s(O) and W-u(O) are tangent at the points of some homoclinic orbit and we let the order of tangency be arbitrary. In the case when sigma < 1, we prove necessary and sufficient conditions of existence of topological horseshoes near homoclinic tangencies. In the case when sigma > 1, we also obtain the criterion of existence of horseshoes under the additional assumption that the homoclinic tangency is simple.en_US
dc.language.isoen_USen_US
dc.subjectHomoclinic tangencyen_US
dc.subjecttopological horseshoesen_US
dc.subjectchaotic dynamicsen_US
dc.subjectregular dynamicsen_US
dc.subjectcriteria of chaosen_US
dc.titleCriteria on existence of horseshoes near homoclinic tangencies of arbitrary ordersen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/14689367.2017.1381232en_US
dc.identifier.journalDYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNALen_US
dc.citation.volume33en_US
dc.citation.spage441en_US
dc.citation.epage463en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000442417500003en_US
dc.citation.woscount1en_US
Appears in Collections:Articles