完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShieh, Tien-Tsanen_US
dc.contributor.authorSpector, Daniel E.en_US
dc.date.accessioned2019-04-02T05:58:34Z-
dc.date.available2019-04-02T05:58:34Z-
dc.date.issued2018-07-01en_US
dc.identifier.issn1864-8258en_US
dc.identifier.urihttp://dx.doi.org/10.1515/acv-2016-0056en_US
dc.identifier.urihttp://hdl.handle.net/11536/148069-
dc.description.abstractIn this paper we continue to advance the theory regarding the Riesz fractional gradient in the calculus of variations and fractional partial differential equations begun in an earlier work of the same name. In particular, we here establish an L-1 Hardy inequality, obtain further regularity results for solutions of certain fractional PDE, demonstrate the existence of minimizers for integral functionals of the fractional gradient with non-linear dependence in the field, and also establish the existence of solutions to corresponding Euler-Lagrange equations obtained as conditions of minimality. In addition, we pose a number of open problems, the answers to which would fill in some gaps in the theory as well as to establish connections with more classical areas of study, including interpolation and the theory of Dirichlet forms.en_US
dc.language.isoen_USen_US
dc.subjectFractional gradienten_US
dc.subjectfractional Hardy inequalityen_US
dc.subjectfractional partial differential equationsen_US
dc.subjectinterpolationen_US
dc.subjectDirichlet formsen_US
dc.titleOn a new class of fractional partial differential equations IIen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/acv-2016-0056en_US
dc.identifier.journalADVANCES IN CALCULUS OF VARIATIONSen_US
dc.citation.volume11en_US
dc.citation.spage289en_US
dc.citation.epage307en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000443113900004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文