Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, Yeong-Mawen_US
dc.contributor.authorPan, Cheng-Tangen_US
dc.contributor.authorLu, Ying-Xuen_US
dc.contributor.authorJian, Sheng-Ruien_US
dc.contributor.authorJuang, Jenh-Yihen_US
dc.date.accessioned2019-04-02T05:58:17Z-
dc.date.available2019-04-02T05:58:17Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn2158-3226en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.5030989en_US
dc.identifier.urihttp://hdl.handle.net/11536/148093-
dc.description.abstractIn this study, the mechanical deformation behaviors of Au nanotubes (Au-NTs) under torsional stress are investigated using molecular dynamics (MD) simulations. The inter-atomic interaction is modeled using the embedded-atom potential. In particular, the effects of loading rate, thickness and length of the nanotube, as well as the thermal effects were systematically explored. The results indicated that higher loading rate, longer length and thinner wall thickness all led to a larger value of critical torsional angle (theta(cr)), which signifies the onset of plastic deformation. On the other hand, theta(cr) decreases with increasing temperature in all simulated results. Moreover, the torsional buckling deformation behavior and geometrical instability are found to strongly depend on the length of Au-NTs, the applied strain rate and temperature with vastly different underlying mechanisms. (C) 2018 Author(s).en_US
dc.language.isoen_USen_US
dc.titleDeformation behaviors of Au nanotubes under torsion by molecular dynamics simulationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.5030989en_US
dc.identifier.journalAIP ADVANCESen_US
dc.citation.volume8en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000443722300059en_US
dc.citation.woscount0en_US
Appears in Collections:Articles