Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Ching-Yien_US
dc.contributor.authorChung, Kai-Minen_US
dc.date.accessioned2019-04-02T05:57:58Z-
dc.date.available2019-04-02T05:57:58Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn1533-7146en_US
dc.identifier.urihttp://hdl.handle.net/11536/148126-
dc.description.abstractHomomorphic encryption is an encryption scheme that allows computations to be evaluated on encrypted inputs without knowledge of their raw messages. Recently Ouyang et al. constructed a quantum homomorphic encryption (QHE) scheme for Clifford circuits with statistical security (or information-theoretic security (IT-security)). It is desired to see whether an information-theoretically-secure (ITS) quantum FHE exists. If not, what other nontrivial class of quantum circuits can be homomorphically evaluated with IT-security? We provide a limitation for the first question that an ITS quantum FHE necessarily incurs exponential overhead. As for the second one, we propose a QHE scheme for the instantaneous quantum polynomial-time (IQP) circuits. Our QHE scheme for IQP circuits follows from the one-time pad.en_US
dc.language.isoen_USen_US
dc.subjectquantum homomorphic encryptionen_US
dc.subjectinformation-theoretical securityen_US
dc.subjectquantum private information retrievalen_US
dc.subjectinstantaneous quantum polynomial-timeen_US
dc.titleON STATISTICALLY-SECURE QUANTUM HOMOMORPHIC ENCRYPTIONen_US
dc.typeArticleen_US
dc.identifier.journalQUANTUM INFORMATION & COMPUTATIONen_US
dc.citation.volume18en_US
dc.citation.spage785en_US
dc.citation.epage794en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000444255700004en_US
dc.citation.woscount0en_US
Appears in Collections:Articles