Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lai, Ching-Yi | en_US |
dc.contributor.author | Chung, Kai-Min | en_US |
dc.date.accessioned | 2019-04-02T05:57:58Z | - |
dc.date.available | 2019-04-02T05:57:58Z | - |
dc.date.issued | 2018-08-01 | en_US |
dc.identifier.issn | 1533-7146 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/148126 | - |
dc.description.abstract | Homomorphic encryption is an encryption scheme that allows computations to be evaluated on encrypted inputs without knowledge of their raw messages. Recently Ouyang et al. constructed a quantum homomorphic encryption (QHE) scheme for Clifford circuits with statistical security (or information-theoretic security (IT-security)). It is desired to see whether an information-theoretically-secure (ITS) quantum FHE exists. If not, what other nontrivial class of quantum circuits can be homomorphically evaluated with IT-security? We provide a limitation for the first question that an ITS quantum FHE necessarily incurs exponential overhead. As for the second one, we propose a QHE scheme for the instantaneous quantum polynomial-time (IQP) circuits. Our QHE scheme for IQP circuits follows from the one-time pad. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | quantum homomorphic encryption | en_US |
dc.subject | information-theoretical security | en_US |
dc.subject | quantum private information retrieval | en_US |
dc.subject | instantaneous quantum polynomial-time | en_US |
dc.title | ON STATISTICALLY-SECURE QUANTUM HOMOMORPHIC ENCRYPTION | en_US |
dc.type | Article | en_US |
dc.identifier.journal | QUANTUM INFORMATION & COMPUTATION | en_US |
dc.citation.volume | 18 | en_US |
dc.citation.spage | 785 | en_US |
dc.citation.epage | 794 | en_US |
dc.contributor.department | 電信工程研究所 | zh_TW |
dc.contributor.department | Institute of Communications Engineering | en_US |
dc.identifier.wosnumber | WOS:000444255700004 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |