Full metadata record
DC FieldValueLanguage
dc.contributor.authorBryant, DEen_US
dc.contributor.authorKhodkar, Aen_US
dc.contributor.authorFu, HLen_US
dc.date.accessioned2019-04-02T05:59:00Z-
dc.date.available2019-04-02T05:59:00Z-
dc.date.issued1998-11-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0378-3758(98)00084-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/148190-
dc.description.abstractWe describe a method which, in certain circumstances, may be used to prove that the well-known necessary conditions for partitioning the edge set of the complete graph on an odd number of vertices (or the complete graph on an even number of vertices with a 1-factor removed) into cycles of lengths m(1),m(2),...,m(t) are sufficient in the case \{m(1), m(2), ..., m(t)}\=2. The method is used to settle the case where the cycle lengths are 4 and 5. (C) 1998 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.title(m,n)-cycle systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0378-3758(98)00084-6en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume74en_US
dc.citation.spage365en_US
dc.citation.epage370en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000077882700010en_US
dc.citation.woscount4en_US
Appears in Collections:Articles