Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bryant, DE | en_US |
dc.contributor.author | Khodkar, A | en_US |
dc.contributor.author | Fu, HL | en_US |
dc.date.accessioned | 2019-04-02T05:59:00Z | - |
dc.date.available | 2019-04-02T05:59:00Z | - |
dc.date.issued | 1998-11-01 | en_US |
dc.identifier.issn | 0378-3758 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/S0378-3758(98)00084-6 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/148190 | - |
dc.description.abstract | We describe a method which, in certain circumstances, may be used to prove that the well-known necessary conditions for partitioning the edge set of the complete graph on an odd number of vertices (or the complete graph on an even number of vertices with a 1-factor removed) into cycles of lengths m(1),m(2),...,m(t) are sufficient in the case \{m(1), m(2), ..., m(t)}\=2. The method is used to settle the case where the cycle lengths are 4 and 5. (C) 1998 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.title | (m,n)-cycle systems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0378-3758(98)00084-6 | en_US |
dc.identifier.journal | JOURNAL OF STATISTICAL PLANNING AND INFERENCE | en_US |
dc.citation.volume | 74 | en_US |
dc.citation.spage | 365 | en_US |
dc.citation.epage | 370 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000077882700010 | en_US |
dc.citation.woscount | 4 | en_US |
Appears in Collections: | Articles |