标题: | Deterministic, Reversible, and Nonvolatile Low-Voltage Writing of Magnetic Domains in Epitaxial BaTiO3/Fe3O4 Heterostructure |
作者: | Zhong, Gaokuo An, Feng Bitla, Yugandhar Wang, Jinbin Zhong, Xiangli Yu, Junxi Gao, Wenpei Zhang, Yi Tang, Congbing Ou, Yun Jiang, Jie Hsieh, Ying-Hui Pan, Xiaoqing Xie, Shuhong Chu, Ying-Hao Li, Jiangyu 材料科学与工程学系 Department of Materials Science and Engineering |
关键字: | multiferroic heterostructure;magnetoelectric coupling;Fe3O4;low-voltage writing;oxygen vacancies |
公开日期: | 1-九月-2018 |
摘要: | The ability to electrically write magnetic bits is highly desirable for future magnetic memories and spintronic devices, though fully deterministic, reversible, and nonvolatile switching of magnetic moments by electric field remains elusive despite extensive research. In this work, we develop a concept to electrically switch magnetization via polarization modulated oxygen vacancies, and we demonstrate the idea in a multiferroic epitaxial heterostructure of BaTiO3/Fe3O4 fabricated by pulsed laser deposition. The piezoelectricity and ferroelectricity of BaTiO3 have been confirmed by macro- and microscale measurements, for which Fe(3)O(4 )serves as the top electrode for switching the polarization. X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectra indicate a mixture of Fe2+ and Fe3+ at O-h sites and Fe3+ at T-d sites in Fe3O4, while the room-temperature magnetic domains of Fe3O4 are revealed by microscopic magnetic force microscopy measurements. It is demonstrated that the magnetic domains of Fe(3)O(4 )can be switched by not only magnetic fields but also electric fields in a deterministic, reversible, and nonvolatile manner, wherein polarization reversal by electric field modulates the oxygen vacancy distribution in Fe3O4, and thus its magnetic state, making it attractive for electrically written magnetic memories. |
URI: | http://dx.doi.org/10.1021/acsnano.8b05284 http://hdl.handle.net/11536/148227 |
ISSN: | 1936-0851 |
DOI: | 10.1021/acsnano.8b05284 |
期刊: | ACS NANO |
Volume: | 12 |
起始页: | 9558 |
结束页: | 9567 |
显示于类别: | Articles |