Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeitmar, Antonen_US
dc.contributor.authorKang, Ming-Hsuanen_US
dc.date.accessioned2019-04-02T06:00:21Z-
dc.date.available2019-04-02T06:00:21Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn0026-2285en_US
dc.identifier.urihttp://dx.doi.org/10.1307/mmj/1529460323en_US
dc.identifier.urihttp://hdl.handle.net/11536/148228-
dc.description.abstractWe extend the theory of Ihara zeta functions to noncompact arithmetic quotients of Bruhat-Tits trees. This new zeta function turns out to be a rational function despite the infinite-dimensional setting. In general, it has zeros and poles in contrast to the compact case. The determinant formulas of Bass and Ihara hold if we define the determinant as the limit of all finite principal minors. From this analysis we derive a prime geodesic theorem, which, applied to special arithmetic groups, yields new asymptotic assertions on class numbers of orders in global fields.en_US
dc.language.isoen_USen_US
dc.titleTree-Lattice Zeta Functions and Class Numbersen_US
dc.typeArticleen_US
dc.identifier.doi10.1307/mmj/1529460323en_US
dc.identifier.journalMICHIGAN MATHEMATICAL JOURNALen_US
dc.citation.volume67en_US
dc.citation.spage617en_US
dc.citation.epage645en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000445976600007en_US
dc.citation.woscount0en_US
Appears in Collections:Articles