完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShih, CWen_US
dc.date.accessioned2019-04-02T05:58:40Z-
dc.date.available2019-04-02T05:58:40Z-
dc.date.issued1998-10-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127498001601en_US
dc.identifier.urihttp://hdl.handle.net/11536/148268-
dc.description.abstractThe cellular neural networks with two kinds of two-parametered asymmetric templates are considered. The parameter space is partitioned into finitely many disjoint regions. In each region, the basic mosaic patterns are characterized. The feasible mosaic patterns corresponding to the parameters in each region can then be determined. To exhibit the spatial complexity of the system, we estimate the entropy of mosaic patterns for parameters in the regime of spatial chaos. In light of this characterization, the effect from the symmetry of the template on pattern formation properties can be seen in detail. We also discuss the existence of some fundamental class of feasible local defect patterns. It is shown that the feasible local k-defect patterns of vertical type cannot exist if the connection weights are anti-symmetric in the vertical direction. Same conclusion also holds for the ones of horizontal type and horizontal direction.en_US
dc.language.isoen_USen_US
dc.titlePattern formation and spatial chaos for cellular neural networks with asymmetric templatesen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127498001601en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume8en_US
dc.citation.spage1907en_US
dc.citation.epage1936en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000078405400003en_US
dc.citation.woscount16en_US
顯示於類別:期刊論文