完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWang, Jenn-Nanen_US
dc.date.accessioned2019-04-02T06:00:29Z-
dc.date.available2019-04-02T06:00:29Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn1930-8337en_US
dc.identifier.urihttp://dx.doi.org/10.3934/ipi.2018043en_US
dc.identifier.urihttp://hdl.handle.net/11536/148272-
dc.description.abstractIn this paper, we consider the two-dimensional Maxwell's equations with the TM mode in pseudo-chiral media. The system can be reduced to the acoustic equation with a negative index of refraction. We first study the transmission eigenvalue problem (TEP) for this equation. By the continuous finite element method, we discretize the reduced equation and transform the study of TEP to a quadratic eigenvalue problem by deflating all nonphysical zeros. We then estimate half of the eigenvalues are negative with order of O(1) and the other half of eigenvalues are positive with order of O(10(2)). In the second part of the paper, we present a practical numerical method to reconstruct the support of the inhomogeneity by the near-field measurements, i.e., Cauchy data. Based on the linear sampling method, we propose the truncated singular value decomposition to solve the ill-posed near-field integral equation, at one wave number which is not a transmission eigenvalue. By carefully chosen an indicator function, this method produce different jumps for the sampling points inside and outside the support. Numerical results show that our method is able to reconstruct the support reliably.en_US
dc.language.isoen_USen_US
dc.subjectTwo-dimensional transmission eigenvalue problemen_US
dc.subjectpseudo-chiral modelen_US
dc.subjecttransverse magnetic modeen_US
dc.subjectlinear sampling methoden_US
dc.subjectsingular value decompositionen_US
dc.titleON THE TRANSMISSION EIGENVALUE PROBLEM FOR THE ACOUSTIC EQUATION WITH A NEGATIVE INDEX OF REFRACTION AND A PRACTICAL NUMERICAL RECONSTRUCTION METHODen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/ipi.2018043en_US
dc.identifier.journalINVERSE PROBLEMS AND IMAGINGen_US
dc.citation.volume12en_US
dc.citation.spage1033en_US
dc.citation.epage1054en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000446987400009en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文