完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, Guan-Yu | en_US |
dc.contributor.author | Kumagai, Takashi | en_US |
dc.date.accessioned | 2019-04-02T05:59:47Z | - |
dc.date.available | 2019-04-02T05:59:47Z | - |
dc.date.issued | 2018-11-01 | en_US |
dc.identifier.issn | 0304-4149 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.spa.2018.01.002 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/148340 | - |
dc.description.abstract | We consider products of ergodic Markov chains and discuss their cutoffs in total variation. Our framework is general in that rates to pick up coordinates are not necessary equal, and different coordinates may correspond to distinct chains. We give necessary and sufficient conditions for cutoffs of product chains in terms of those of coordinate chains under certain conditions. A comparison of mixing times between the product chain and its coordinate chains is made in detail as well. Examples are given to show that neither cutoffs for product chains nor for coordinate chains imply others in general. (C) 2018 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Product chains | en_US |
dc.subject | Total variation and Hellinger distances | en_US |
dc.subject | Cutoffs | en_US |
dc.title | Cutoffs for product chains | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.spa.2018.01.002 | en_US |
dc.identifier.journal | STOCHASTIC PROCESSES AND THEIR APPLICATIONS | en_US |
dc.citation.volume | 128 | en_US |
dc.citation.spage | 3840 | en_US |
dc.citation.epage | 3879 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000447816800009 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |