Full metadata record
DC FieldValueLanguage
dc.contributor.authorShafrir, Itaien_US
dc.contributor.authorSpeetor, Danielen_US
dc.date.accessioned2019-04-02T05:59:57Z-
dc.date.available2019-04-02T05:59:57Z-
dc.date.issued2018-12-01en_US
dc.identifier.issn0362-546Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.na.2018.04.027en_US
dc.identifier.urihttp://hdl.handle.net/11536/148397-
dc.description.abstractIn this paper we obtain the best constants in some higher order Sobolev inequalities in the critical exponent. These inequalities can be separated into two types: those that embed into L-infinity(R-N) and those that embed into slightly larger target spaces. Concerning the former, we show that for k is an element of{1,..., N - 1}, N - k even, one has an optimal constant c(k) > 0 such that parallel to u parallel to L-infinity <= c(k) integral vertical bar del(k)(-Delta)((N- k)/2)u vertical bar for all u is an element of C-c(infinity) (R-N) (the case k = N was handled in Shafrir, 2018). Meanwhile the most significant of the latter is a variation of D. Adams' higher order inequality of J. Moser: For Omega subset of R-N, m is an element of N and p = N/m, there exists A > 0 and optimal constant beta(0) > 0 such that integral(Omega) exp(beta(0)vertical bar u vertical bar(p')) <= A vertical bar Omega vertical bar for all u such that parallel to del(m)u parallel to(Lp(Omega)) <= 1, where parallel to del(m)u parallel to(Lp(Omega)) is the traditional seminorm on the space W-m,W-p(Omega). (C) 2018 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSobolev embeddingen_US
dc.subjectCritical exponenten_US
dc.subjectBest constanten_US
dc.titleBest constants for two families of higher order critical Sobolev embeddingsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.na.2018.04.027en_US
dc.identifier.journalNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONSen_US
dc.citation.volume177en_US
dc.citation.spage753en_US
dc.citation.epage769en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000449073400022en_US
dc.citation.woscount0en_US
Appears in Collections:Articles