Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jou, J | en_US |
dc.contributor.author | Liu, JL | en_US |
dc.date.accessioned | 2019-04-02T05:58:43Z | - |
dc.date.available | 2019-04-02T05:58:43Z | - |
dc.date.issued | 1999-01-01 | en_US |
dc.identifier.issn | 0163-0563 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1080/01630569908816906 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/148401 | - |
dc.description.abstract | Based on the solution of local weak residual problems, conforming and nonconforming error estimators are presented and analyzed for finite element solutions of symmetric positive differential equations in the sense of Friedrichs. These estimators are devised to treat the Friedrichs system in a general setting in terms of application (hyperbolic as well as mixed-type problems), approximation (h-, p and hp-version finite element methods), implementation (no local boundary conditions and no flux jumps across element boundaries) and a posteriori error analysis (very moderate conditions on the system and on the approximation). Three model problems of the Friedrichs system, namely, the neutron transport equation, the forward-backward heat equation and the Tricomi problem are used to illustrate the applicability of the weak residual error estimation. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A posteriori finite element error analysis for symmetric positive differential equations | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/01630569908816906 | en_US |
dc.identifier.journal | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION | en_US |
dc.citation.volume | 20 | en_US |
dc.citation.spage | 473 | en_US |
dc.citation.epage | 490 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000081842300005 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |