Full metadata record
DC FieldValueLanguage
dc.contributor.authorDomann, Johnen_US
dc.contributor.authorWu, Taoen_US
dc.contributor.authorChung, Tien-Kanen_US
dc.contributor.authorCarman, Gregen_US
dc.date.accessioned2019-04-02T05:58:45Z-
dc.date.available2019-04-02T05:58:45Z-
dc.date.issued2018-11-01en_US
dc.identifier.issn0883-7694en_US
dc.identifier.urihttp://dx.doi.org/10.1557/mrs.2018.260en_US
dc.identifier.urihttp://hdl.handle.net/11536/148437-
dc.description.abstractStrain-mediated magnetoelectric coupling provides a powerful method for controlling nanoscale magnetism with an electric voltage. This article reviews the initial use of macroscale composites and subsequent experimental control of magnetic thin films, nanoscale heterostructures, and single domains. The discussion highlights several characteristics enabling small, fast, and energy-efficient technologies. The second section covers applications where strain-mediated magnetoelectricity has been used, with emphasis on the storage, transmission, and processing of information (i.e., memory, antenna, and logic devices). These advances are order-of-magnitude improvements over conventional technologies, and open up exciting new possibilities.en_US
dc.language.isoen_USen_US
dc.subjectmagneticen_US
dc.subjectferroelectricen_US
dc.subjectpiezoelectricen_US
dc.subjectnanoscaleen_US
dc.subjectmemoryen_US
dc.titleStrain-mediated magnetoelectric storage, transmission, and processing: Putting the squeeze on dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1557/mrs.2018.260en_US
dc.identifier.journalMRS BULLETINen_US
dc.citation.volume43en_US
dc.citation.spage848en_US
dc.citation.epage853en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000449814000009en_US
dc.citation.woscount1en_US
Appears in Collections:Articles