完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKang, Ming-Hsuanen_US
dc.contributor.authorLi, Wen-Ching Winnieen_US
dc.contributor.authorWang, Chian-Jenen_US
dc.date.accessioned2019-04-02T05:58:44Z-
dc.date.available2019-04-02T05:58:44Z-
dc.date.issued2018-10-01en_US
dc.identifier.issn0021-2172en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11856-018-1756-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/148440-
dc.description.abstractIn this paper, we study relations between Langlands L-functions and zeta functions of geodesic walks and galleries for finite quotients of the apartments of G =PGL(3) and PGSp(4) over a nonarchimedean local field with q elements in its residue field. They give rise to an identity (Theorem 5.3) which can be regarded as a generalization of Ihara's theorem for finite quotients of the Bruhat-Tits trees. This identity is shown to agree with the q = 1 version of the analogous identities for finite quotients of the building of G established in [KL14, KLW10, FLW13], verifying the philosophy of the field with one element by Tits. A new identity for finite quotients of the building of PGSp(4) involving the standard L-function (Theorem 6.3), complementing the one in [FLW13] which involves the spin L-function, is also obtained.en_US
dc.language.isoen_USen_US
dc.titleZeta and L-functions of finite quotients of apartments and buildingsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11856-018-1756-3en_US
dc.identifier.journalISRAEL JOURNAL OF MATHEMATICSen_US
dc.citation.volume228en_US
dc.citation.spage79en_US
dc.citation.epage117en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000449871000004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文