完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHu, SJen_US
dc.contributor.authorJuan, STen_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2019-04-02T05:58:46Z-
dc.date.available2019-04-02T05:58:46Z-
dc.date.issued1999-01-01en_US
dc.identifier.issn0911-0119en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s003730050063en_US
dc.identifier.urihttp://hdl.handle.net/11536/148501-
dc.description.abstractSuppose G is a graph and T is a set of non-negative integers that contains 0. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that \f(x) - f(y)\ is not an element of T whenever xy is an element of E(G). The edge span of a T-coloring f is the maximum value of \f(x) - f(y)\ over all edges xy, and the T-edge span of a graph G is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the dth power C-n(d) of the n-cycle C-n for T = {0, 1, 2, ..., k - 1}. In particular, we find the exact value of the T-edge span of C-n(d) for n = 0 or 1 (mod d + 1), and lower and upper bounds for other cases.en_US
dc.language.isoen_USen_US
dc.titleT-colorings and T-edge spans of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s003730050063en_US
dc.identifier.journalGRAPHS AND COMBINATORICSen_US
dc.citation.volume15en_US
dc.citation.spage295en_US
dc.citation.epage301en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000087242700005en_US
dc.citation.woscount7en_US
顯示於類別:期刊論文