Full metadata record
DC FieldValueLanguage
dc.contributor.authorGomez-Sanchez, Oscar J.en_US
dc.contributor.authorRamirez, Hanz Y.en_US
dc.date.accessioned2019-04-02T05:59:05Z-
dc.date.available2019-04-02T05:59:05Z-
dc.date.issued2018-11-26en_US
dc.identifier.issn2469-9926en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevA.98.053846en_US
dc.identifier.urihttp://hdl.handle.net/11536/148517-
dc.description.abstractIn this work, dissipative effects from a phonon bath on the resonance fluorescence of a solid-state two-level system embedded in a high-quality semiconductor microcavity and driven by an intense laser are investigated. Within the density operator formalism, we derive a variational master equation valid for broader ranges of temperatures, pumping rates, and radiation-matter couplings than previous studies. From the obtained master equation, fluorescence spectra for various thermal and exciting conditions are numerically calculated and compared to those computed from weak coupling and polaronic master equations, respectively. Our results evidence the breakdown of those rougher approaches under increased temperature and strong pumping.en_US
dc.language.isoen_USen_US
dc.titleSolid-state emitter embedded in a microcavity under intense excitation: A variational master-equation approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevA.98.053846en_US
dc.identifier.journalPHYSICAL REVIEW Aen_US
dc.citation.volume98en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000451329500041en_US
dc.citation.woscount1en_US
Appears in Collections:Articles