Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Chien-Hungen_US
dc.contributor.authorChang, Kow-Mingen_US
dc.contributor.authorChen, Yi-Mingen_US
dc.contributor.authorZhang, Yu-Xinen_US
dc.contributor.authorTan, Yu-Hsuanen_US
dc.date.accessioned2019-04-02T05:58:14Z-
dc.date.available2019-04-02T05:58:14Z-
dc.date.issued2019-04-01en_US
dc.identifier.issn1533-4880en_US
dc.identifier.urihttp://dx.doi.org/10.1166/jnn.2019.15997en_US
dc.identifier.urihttp://hdl.handle.net/11536/148542-
dc.description.abstractIn the past few years, thin film transistors have a wide range of applications on display technology, material selection and quality for its active layer is critical for device performance. Traditional amorphous silicon (a-Si) silicon has a lot of advantages such as good productivity, short process and low-cost. It also has a lot of shortcomings on these applications on TFTs such as photosensitivity, light degradation, and opacity, etc. The dispute of the material based on a-Si: H as an active layer in TFT is low field effect mobility (similar to 1 cm(2)/V.S) (M. Shur and M. Hack, J. Appl. Phys. 55, 3831 (1984)), photo sensitivity (low band gap about 1.7 V) and high deposition temperature (similar to 400 degrees C) (M. Shur, et al., J. Appl. Phys. 66, 3371 (1989); K. Khakzar and E. H. Lueder, IEEE Trans. Electron Devices 39, 1438 (1992)). Amorphous In-Ga-Zn-O (IGZO) had attracted attention that compared with the conventional a-Si: H, due to its good properties of simultaneously high/low conductivity with high visual transparency via doping level. Oxide-based semiconductors, such as ZnO (G. Adamopoulos, et al., Appl. Phys. Lett. 95, 133507-3 (2009); H.-C. Cheng, et al., Appl. Phys. Lett. 90, 012113-3 (2007)) and IGZO (C. J. Chiu, et al., Electron Device Letters, IEEE 31, 1245 (2010); L. Linfeng and P. Junbiao, IEEE Transactions on Electron Devices 58, 1452 (2011)) have been reported for the active channel layer. These oxide-based materials offer good electrical properties and high transparency for thin film transistors, its high transmittance can be applied to fabricate the full transparent TFT on flexible substrate. With In-situ hydrogen plasma treatment on a-IGZO produced by atmospheric pressure-plasma enhanced chemical vapor deposition (AP-PECVD), the material characteristics of a-IGZO is studied.en_US
dc.language.isoen_USen_US
dc.subjecta-IGZOen_US
dc.subjectAP-PECVDen_US
dc.subjectIn-Situ Hydrogen Plasmaen_US
dc.titleStudy of In-Situ Hydrogen Plasma Treatment on InGaZnO with Atmospheric Pressure-Plasma Enhanced Chemical Vapor Depositionen_US
dc.typeArticleen_US
dc.identifier.doi10.1166/jnn.2019.15997en_US
dc.identifier.journalJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGYen_US
dc.citation.volume19en_US
dc.citation.spage2310en_US
dc.citation.epage2313en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.department國際半導體學院zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.contributor.departmentInternational College of Semiconductor Technologyen_US
dc.identifier.wosnumberWOS:000451787200062en_US
dc.citation.woscount0en_US
Appears in Collections:Articles