完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Ti-Rongen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorChen, Guan-Wunen_US
dc.contributor.authorWei, Ting-Hanen_US
dc.contributor.authorWu, Hung-Chunen_US
dc.contributor.authorLai, Tung-Yien_US
dc.contributor.authorLan, Li-Chengen_US
dc.date.accessioned2019-04-02T05:58:28Z-
dc.date.available2019-04-02T05:58:28Z-
dc.date.issued2018-12-01en_US
dc.identifier.issn2475-1502en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TG.2018.2852806en_US
dc.identifier.urihttp://hdl.handle.net/11536/148616-
dc.description.abstractThis paper proposes a new approach to a novel value network architecture for the game Go, called a multilabeled (ML) value network. In the ML value network, different values (win rates) are trained simultaneously for different settings of komi, a compensation given to balance the initiative of playing first. The ML value network has three advantages: 1) it outputs values for different komi; (2) it supports dynamic komi; and (3) it lowers the mean squared error (MSE). This paper also proposes a new dynamic komi method to improve game-playing strength. This paper also performs experiments to demonstrate the merits of the architecture. First, the MSE of the ML value network is generally lower than the value network alone. Second, the program based on the ML value network wins by a rate of 67.6% against the program based on the value network alone. Third, the program with the proposed dynamic komi method significantly improves the playing strength over the baseline that does not use dynamic komi, especially for handicap games. To our knowledge, up to date, no handicap games have been played openly by programs using value networks. This paper provides these programs with a useful approach to playing handicap games.en_US
dc.language.isoen_USen_US
dc.subjectBoard evaluation (BV)en_US
dc.subjectComputer Goen_US
dc.subjectdynamic komien_US
dc.subjectpolicy networken_US
dc.subjectreinforcement learningen_US
dc.subjectsupervised learningen_US
dc.subjectvalue networken_US
dc.titleMultilabeled Value Networks for Computer Goen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TG.2018.2852806en_US
dc.identifier.journalIEEE TRANSACTIONS ON GAMESen_US
dc.citation.volume10en_US
dc.citation.spage378en_US
dc.citation.epage389en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000453577300006en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文