Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Hua-Tsungen_US
dc.contributor.authorChou, Chien-Lien_US
dc.contributor.authorTsai, Wen-Jiinen_US
dc.contributor.authorLee, Suh-Yinen_US
dc.contributor.authorYu, Jen-Yuen_US
dc.date.accessioned2014-12-08T15:20:53Z-
dc.date.available2014-12-08T15:20:53Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-61284-349-0en_US
dc.identifier.issn1945-7871en_US
dc.identifier.urihttp://hdl.handle.net/11536/14865-
dc.description.abstractIn baseball games, different release points of pitchers form several kinds of pitching styles. Different pitching styles possess individual advantages. This paper presents a novel pitching style recognition approach for automatic generation of game information and video annotation. First, an effective object segmentation algorithm is designed to compute the body contour and extract the pitcher's body. Then, star skeleton is used as the representative descriptor of the pitcher posture for pitching style recognition. The proposed approach has been tested on broadcast baseball video and the promising experimental results validate the robustness and practicability.en_US
dc.language.isoen_USen_US
dc.subjectobject segmentationen_US
dc.subjectsports video analysisen_US
dc.titleEXTRACTION AND REPRESENTATION OF HUMAN BODY FOR PITCHING STYLE RECOGNITION IN BROADCAST BASEBALL VIDEOen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME)en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000297172100009-
Appears in Collections:Conferences Paper