完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLo, Wen-Huien_US
dc.contributor.authorChen, Sin-Horngen_US
dc.date.accessioned2014-12-08T15:20:53Z-
dc.date.available2014-12-08T15:20:53Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4244-7935-1en_US
dc.identifier.issn1091-5281en_US
dc.identifier.urihttp://hdl.handle.net/11536/14867-
dc.description.abstractThe performance of finding the upper bound of eigenvalues (UBE) is affected by the quality of correlation matrix estimation. In this paper, a new quantile-based maximum likelihood mean estimator is proposed to improve the mean estimation on sparse data condition so as to obtain a more reliable correlation matrix estimate from observed samples. This in turn improves the UBE finding. The study is specially focused on the quasi-normal signal of combined quantities with asymptotic window-shape distribution and fast-decaying short tail. Experimental results show that the new mean estimator outperforms the conventional sample mean estimator on mean estimation. The UBE finding is also improved accordingly.en_US
dc.language.isoen_USen_US
dc.subjecteigenvalueen_US
dc.subjectsparse dataen_US
dc.subjectupper bounden_US
dc.subjectsample meanen_US
dc.subjectquasi-normalen_US
dc.subjectmaximum likelihood estimatoren_US
dc.subjectquantileen_US
dc.subjectcombined quantitiesen_US
dc.subjectsmart griden_US
dc.subjectinternet of thingsen_US
dc.titleAdvanced Metering the Signal Activity of Combined Signal in Sparse Data Conditionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC)en_US
dc.citation.spage350en_US
dc.citation.epage354en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000297171900072-
顯示於類別:會議論文