完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lo, Wen-Hui | en_US |
dc.contributor.author | Chen, Sin-Horng | en_US |
dc.date.accessioned | 2014-12-08T15:20:53Z | - |
dc.date.available | 2014-12-08T15:20:53Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.isbn | 978-1-4244-7935-1 | en_US |
dc.identifier.issn | 1091-5281 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/14867 | - |
dc.description.abstract | The performance of finding the upper bound of eigenvalues (UBE) is affected by the quality of correlation matrix estimation. In this paper, a new quantile-based maximum likelihood mean estimator is proposed to improve the mean estimation on sparse data condition so as to obtain a more reliable correlation matrix estimate from observed samples. This in turn improves the UBE finding. The study is specially focused on the quasi-normal signal of combined quantities with asymptotic window-shape distribution and fast-decaying short tail. Experimental results show that the new mean estimator outperforms the conventional sample mean estimator on mean estimation. The UBE finding is also improved accordingly. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | eigenvalue | en_US |
dc.subject | sparse data | en_US |
dc.subject | upper bound | en_US |
dc.subject | sample mean | en_US |
dc.subject | quasi-normal | en_US |
dc.subject | maximum likelihood estimator | en_US |
dc.subject | quantile | en_US |
dc.subject | combined quantities | en_US |
dc.subject | smart grid | en_US |
dc.subject | internet of things | en_US |
dc.title | Advanced Metering the Signal Activity of Combined Signal in Sparse Data Condition | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2011 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) | en_US |
dc.citation.spage | 350 | en_US |
dc.citation.epage | 354 | en_US |
dc.contributor.department | 電信工程研究所 | zh_TW |
dc.contributor.department | Institute of Communications Engineering | en_US |
dc.identifier.wosnumber | WOS:000297171900072 | - |
顯示於類別: | 會議論文 |