Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuo, Yongjunen_US
dc.contributor.authorCho, Chun Yuen_US
dc.contributor.authorHuang, Kai Fengen_US
dc.contributor.authorChen, Yung Fuen_US
dc.contributor.authorLee, Chin C.en_US
dc.date.accessioned2019-04-02T06:01:08Z-
dc.date.available2019-04-02T06:01:08Z-
dc.date.issued2019-01-15en_US
dc.identifier.issn0146-9592en_US
dc.identifier.urihttp://dx.doi.org/10.1364/OL.44.000327en_US
dc.identifier.urihttp://hdl.handle.net/11536/148714-
dc.description.abstractThe design criterion of thermal conductivity for the GaAs/AlAs distributed Bragg reflector (DBR) superlattice structure was thoroughly investigated to precisely analyze the thermal behaviors of the optically pumped vertically external cavity surface-emitting laser (VECSEL). A finite element model with detailed configuration of a VECSEL gain chip was constructed to fulfill the analysis. A 1060 nm VECSEL with different pump conditions was further demonstrated to verify the finite element analysis. At the VECSEL thermal rollover point, the analysis results show that the model with the superlattice property predicts more precise temperature values than that using a bulk composite property. It reveals that the accurate determination of the thermal conductivity of the DBR superlattice is significantly important for the VECSEL thermal analysis. (C) 2019 Optical Society of Americaen_US
dc.language.isoen_USen_US
dc.titleExploring the DBR superlattice effect on the thermal performance of a VECSEL with the finite element methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1364/OL.44.000327en_US
dc.identifier.journalOPTICS LETTERSen_US
dc.citation.volume44en_US
dc.citation.spage327en_US
dc.citation.epage330en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000455620100037en_US
dc.citation.woscount0en_US
Appears in Collections:Articles