完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Shih-Huien_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.date.accessioned2014-12-08T15:20:53Z-
dc.date.available2014-12-08T15:20:53Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6588-0en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/14872-
dc.description.abstractIn this paper, a new class of learning models, namely the additive radial basis function networks (ARBFNs) for general nonlinear regression problems are proposed. This class of learning machines combines the radial basis function networks (RBFNs) commonly used in general machine learning problems and the additive models (AMs) frequently encountered in semi parametric regression problems. In statistical regression theory, AM is a good compromise between the linear parametric model and the non parametric model. Simulation results show that for the given learning problem, ARBFNs usually need fewer hidden nodes than those of RBFNs for the same level of accuracy.en_US
dc.language.isoen_USen_US
dc.subjectadditive radial basis function network (ARBFN)en_US
dc.subjectradial basis function network (RBFN)en_US
dc.subjectadditive model (AM)en_US
dc.subjectsemi parametric regressionen_US
dc.titlePreliminary Study on Additive Radial Basis Function Networksen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010)en_US
dc.citation.spage3113en_US
dc.citation.epage3117en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000295015303004-
顯示於類別:會議論文