完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorLu, Yi-Chenen_US
dc.contributor.authorChang, Yangen_US
dc.contributor.authorBustince, Humbertoen_US
dc.contributor.authorFernandez, Javieren_US
dc.contributor.authorSan, Jose Antonioen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorChang, Yu-Chengen_US
dc.contributor.authorWang, Yu-Kaien_US
dc.contributor.authorDimuro, Gracaliz Pereiraen_US
dc.date.accessioned2019-04-02T06:00:46Z-
dc.date.available2019-04-02T06:00:46Z-
dc.date.issued2019-02-01en_US
dc.identifier.issn1556-603Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/MCI.2018.2881647en_US
dc.identifier.urihttp://hdl.handle.net/11536/148736-
dc.description.abstractBrain-computer interface technologies, such as steady-state visually evoked potential, P300, and motor imagery are methods of communication between the human brain and the external devices. Motor imagery-based brain-computer interfaces are popular because they avoid unnecessary external stimuli. Although feature extraction methods have been illustrated in several machine intelligent systems in motor imagery-based brain-computer interface studies, the performance remains unsatisfactory. There is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are appropriate for use in applications in which fusion of data must consider possible data interactions. To enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after employing the classification method of traditional brain-computer interfaces, to consider possible links between the data. Subsequently, we proposed a novel classification framework called the multimodal fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared with traditional brain-computer interface systems. Furthermore, when using the motor imagery-relevant electroencephalography frequency alpha and beta bands for the input features, the system achieved the highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, we present a novel concept for enhancing brain-computer interface systems that adopts fuzzy integrals, especially in the fusion for classifying brain-computer interface commands.en_US
dc.language.isoen_USen_US
dc.titleMultimodal Fuzzy Fusion for Enhancing the Motor-Imagery-Based Brain Computer Interfaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/MCI.2018.2881647en_US
dc.identifier.journalIEEE COMPUTATIONAL INTELLIGENCE MAGAZINEen_US
dc.citation.volume14en_US
dc.citation.spage96en_US
dc.citation.epage106en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000456164000008en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文