完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Ping-Yenen_US
dc.contributor.authorChiu, Yi-Hsuanen_US
dc.contributor.authorLai, Ting-Hsuanen_US
dc.contributor.authorFang, Mei-Jingen_US
dc.contributor.authorWang, Yu-Tingen_US
dc.contributor.authorHsu, Yung-Jungen_US
dc.date.accessioned2019-04-02T06:00:17Z-
dc.date.available2019-04-02T06:00:17Z-
dc.date.issued2019-01-23en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.8b17858en_US
dc.identifier.urihttp://hdl.handle.net/11536/148782-
dc.description.abstractAs the feet of clay, photocorrosion induced by hole accumulation has placed serious limitations on the widespread deployment of sulfide nanostructures for photoelectrochemical (PEC) water splitting. Developing sufficiently stable electrodes to construct durable PEC systems is therefore the key to the realization of solar hydrogen production. Here, an innovative charge-transfer manipulation concept based on the aligned hole transport across the interface has been realized to enhance the photostability of In2S3 electrodes toward PEC solar hydrogen production. The concept was realized by conducting compact deposition of In2S3 nanocrystals on the TiO2 nanowire array. Under PEC operation, the supporting TiO2 nanowires functioned as an anisotropic charge-transfer backbone to arouse aligned charge transport across the TiO2-In2S3 interface. Because of the aligned hole transport, the TiO2 nanowire-supported In2S3 hybrid nanostructures (TiO2 In2S3) exhibited improved hole-transfer dynamics at the TiO2-In2S3 interface and enhanced hole injection kinetics at the electrode surface, substantially increasing the long-term photostability toward solar hydrogen production. The PEC durability tests showed that TiO2-In2S3 electrodes can achieve nearly 90.9% retention of initial photocurrent upon continuous irradiation for 6 h, whereas the pure In2S3 merely retained 20.8% of initial photocurrent. This double-gain charge-transfer manipulation concept is expected to convey a viable approach to the intelligent design of highly efficient and sufficiently stable sulfide photocatalysts for sustainable solar fuel generation.en_US
dc.language.isoen_USen_US
dc.subjectphotocorrosionen_US
dc.subjectIn2S3en_US
dc.subjectCdSen_US
dc.subjectsolar hydrogen productionen_US
dc.subjectinterfacial charge dynamicsen_US
dc.titleTiO2 Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Productionen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.8b17858en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume11en_US
dc.citation.spage3006en_US
dc.citation.epage3015en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000457067300052en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文