Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guo, Chun-Hua | en_US |
dc.contributor.author | Lin, Wen-Wei | en_US |
dc.contributor.author | Liu, Ching-Sung | en_US |
dc.date.accessioned | 2019-04-02T06:00:43Z | - |
dc.date.available | 2019-04-02T06:00:43Z | - |
dc.date.issued | 2019-02-01 | en_US |
dc.identifier.issn | 1017-1398 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s11075-018-0498-y | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/148801 | - |
dc.description.abstract | We propose a modified Newton iteration for finding some nonnegative Z-eigenpairs of a nonnegative tensor. When the tensor is irreducible, all nonnegative eigenpairs are known to be positive. We prove local quadratic convergence of the new iteration to any positive eigenpair of a nonnegative tensor, under the usual assumption guaranteeing the local quadratic convergence of the original Newton iteration. A big advantage of the modified Newton iteration is that it seems capable of finding a nonnegative eigenpair starting with any positive unit vector. Special attention is paid to transition probability tensors. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Nonnegative tensor | en_US |
dc.subject | Transition probability tensor | en_US |
dc.subject | Nonnegative Z-eigenpair | en_US |
dc.subject | Modified Newton iteration | en_US |
dc.subject | Quadratic convergence | en_US |
dc.subject | 65F15 | en_US |
dc.subject | 65F50 | en_US |
dc.title | A modified Newton iteration for finding nonnegative Z-eigenpairs of a nonnegative tensor | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11075-018-0498-y | en_US |
dc.identifier.journal | NUMERICAL ALGORITHMS | en_US |
dc.citation.volume | 80 | en_US |
dc.citation.spage | 595 | en_US |
dc.citation.epage | 616 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000457371000013 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |