Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhu, Fangyien_US
dc.contributor.authorMa, Zhanyuen_US
dc.contributor.authorLi, Xiaoxuen_US
dc.contributor.authorChen, Guangen_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorXue, Jing-Haoen_US
dc.contributor.authorGuo, Junen_US
dc.date.accessioned2019-04-02T06:00:24Z-
dc.date.available2019-04-02T06:00:24Z-
dc.date.issued2019-02-07en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2018.02.099en_US
dc.identifier.urihttp://hdl.handle.net/11536/148837-
dc.description.abstractSmall-sample classification is a challenging problem in computer vision. In this work, we show how to efficiently and effectively utilize semantic information of the annotations to improve the performance of small-sample classification. First, we propose an image-text dual neural network to improve the classification performance on small-sample datasets. The proposed model consists of two sub-models, an image classification model and a text classification model. After training the sub-models separately, we design a novel method to fuse the two sub-models rather than simply combine their results. Our image-text dual neural network aims to utilize the text information to overcome the training problem of deep models on small-sample datasets. Then, we propose to incorporate a decision strategy into the image-text dual neural network to further improve the performance of our original model on few-shot datasets. To demonstrate the effectiveness of the proposed models, we conduct experiments on the LabelMe and UIUC-Sports datasets. Experimental results show that our method is superior to other models. (C) 2018 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSmall-sample image classificationen_US
dc.subjectFew-shoten_US
dc.subjectEnsemble learningen_US
dc.subjectDeep convolutional neural networken_US
dc.titleImage-text dual neural network with decision strategy for small-sample image classificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2018.02.099en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume328en_US
dc.citation.spage182en_US
dc.citation.epage188en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000458065600019en_US
dc.citation.woscount1en_US
Appears in Collections:Articles