Title: Formation and infrared identification of protonated fluoranthene isomers 3-, 9-, and 10-C16H11+ in solid para-H-2
Authors: Chakraborty, Arghya
Lee, Yuan-Pern
交大名義發表
應用化學系
應用化學系分子科學碩博班
National Chiao Tung University
Department of Applied Chemistry
Institute of Molecular science
Issue Date: 28-Jan-2019
Abstract: Polycyclic aromatic hydrocarbons (PAH) and their derivatives are prospective carriers of unidentified infrared (UIR) emission features observed in interstellar media. Fluoranthene (C16H10) is a simple planar PAH with five- and six-membered rings; it can be considered as a fragment of C-60, which, along with its cationic counterpart, has been identified in interstellar media. Protonated fluoranthene, C16H11+, was generated upon electron bombardment during deposition at 3.2 K of p-H-2 containing fluoranthene in a small proportion. The intensities of infrared features of C16H11+ decreased after maintaining the matrix in darkness because of its neutralization with trapped electrons. According to the correlations in intensities upon neutralization and secondary photolysis, observed lines were classified into three groups which are assigned to isomers 3-C16H11+, 9-C16H11+, and 10-C16H11+. Experimental vibrational wavenumbers and relative IR intensities of the features agree with corresponding calculated values predicted for these three isomers of C16H11+ with the B3PW91/6-311++G(2d,2p) method. 3-C16H11+ and 9-C16H11+ are predicted to have the lowest energy (within 5 kJ mol(-1)), whereas 10- and 1-C16H11+ are lying above the global minimum 3-C16H11+ by approximate to 20 kJ mol(-1). However, definitive identification of 1-C16H11+ could not be made as only the most intense line is tentatively assigned. Although the observed spectra of these isomers match unsatisfactorily with the UIR bands, they will facilitate the potential terrestrial and extraterrestrial identification of these species.
URI: http://dx.doi.org/10.1039/c8cp05849k
http://hdl.handle.net/11536/148915
ISSN: 1463-9076
DOI: 10.1039/c8cp05849k
Journal: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume: 21
Begin Page: 1820
End Page: 1829
Appears in Collections:Articles