Full metadata record
DC FieldValueLanguage
dc.contributor.authorYeh, Li-Mingen_US
dc.date.accessioned2019-04-02T05:58:20Z-
dc.date.available2019-04-02T05:58:20Z-
dc.date.issued2019-05-05en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2018.11.036en_US
dc.identifier.urihttp://hdl.handle.net/11536/148938-
dc.description.abstractLinear elliptic equations in composite media with anisotropic fibres are concerned. The media consist of a periodic set of anisotropic fibres with low conductivity, included in a connected matrix with high conductivity. Inside the anisotropic fibres, the conductivity in the longitudinal direction is relatively high compared with that in the transverse directions. The coefficients of the elliptic equations depend on the conductivity. This work is to derive the Holder and the gradient L-P estimates (uniformly in the period size of the set of anisotropic fibres as well as in the conductivity ratio of the fibres in the transverse directions to the connected matrix) for the solutions of the elliptic equations. Furthermore, it is shown that, inside the fibres, the solutions have higher regularity along the fibres than in the transverse directions. (C) 2019 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectMoney spaceen_US
dc.subjectCampanato spaceen_US
dc.subjectAnisotropic fibresen_US
dc.subjectLongitudinal directionen_US
dc.subjectTransverse directionen_US
dc.titleLinear elliptic equations in composite media with anisotropic fibresen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2018.11.036en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume266en_US
dc.citation.spage6580en_US
dc.citation.epage6620en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000459921400011en_US
dc.citation.woscount0en_US
Appears in Collections:Articles