完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, SYen_US
dc.contributor.authorLiu, JLen_US
dc.date.accessioned2019-04-02T05:59:14Z-
dc.date.available2019-04-02T05:59:14Z-
dc.date.issued1997-12-18en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0377-0427(97)00174-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/149090-
dc.description.abstractA new first-order system formulation for the linear elasticity problem in displacement-stress form is proposed. The formulation is derived by introducing additional variables of derivatives of the displacements, whose combinations represent the usual stresses. Standard and weighted least-squares finite element methods are then applied to this extended system. These methods offer certain advantages such as that they need not satisfy the inf-sup condition which is required in the mixed finite element formulation, that a single continuous piecewise polynomial space can be used for the approximation of all the unknowns, that the resulting algebraic systems are symmetric and positive definite, and that accurate approximations of the displacements and the stresses can be obtained simultaneously. With displacement boundary conditions, it is shown that both methods achieve optimal rates of convergence in the H-1-norm and in the L-2-norm for all the unknowns. Numerical experiments with various Poisson ratios are given to demonstrate the theoretical error estimates.en_US
dc.language.isoen_USen_US
dc.subjectelasticityen_US
dc.subjectPoisson ratiosen_US
dc.subjectelliptic systemsen_US
dc.subjectleast squaresen_US
dc.subjectfinite elementsen_US
dc.subjectconvergenceen_US
dc.subjecterror estimatesen_US
dc.titleLeast-squares finite element methods for the elasticity problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0377-0427(97)00174-Xen_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen_US
dc.citation.volume87en_US
dc.citation.spage39en_US
dc.citation.epage60en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000071396700004en_US
dc.citation.woscount8en_US
顯示於類別:期刊論文