Full metadata record
DC FieldValueLanguage
dc.contributor.authorHSU, LHen_US
dc.contributor.authorWANG, PFen_US
dc.contributor.authorWU, CTen_US
dc.date.accessioned2019-04-02T05:59:16Z-
dc.date.available2019-04-02T05:59:16Z-
dc.date.issued1992-01-01en_US
dc.identifier.issn0926-5473en_US
dc.identifier.urihttp://hdl.handle.net/11536/149107-
dc.description.abstractThe weight of a weighted graph G, w(G), is defined to be the weight of its minimum spanning tree. An edge e is called a most vital edge in G if w(G - e) greater-than-or-equal-to w(G - e') for every edge e' of G. In this paper, we present several cost-optimal parallel algorithms, under different computation models, to find the most vital edge in a weighted graph.en_US
dc.language.isoen_USen_US
dc.subjectNONNUMERICAL ALGORITHMS AND PROBLEMSen_US
dc.subjectGRAPH THEORYen_US
dc.titlePARALLEL ALGORITHMS FOR FINDING THE MOST VITAL EDGE WITH RESPECT TO MINIMUM SPANNING TREEen_US
dc.typeArticleen_US
dc.identifier.journalIFIP TRANSACTIONS A-COMPUTER SCIENCE AND TECHNOLOGYen_US
dc.citation.volume12en_US
dc.citation.spage284en_US
dc.citation.epage290en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1992KV27500038en_US
dc.citation.woscount0en_US
Appears in Collections:Articles