Full metadata record
DC FieldValueLanguage
dc.contributor.authorJUANG, Jen_US
dc.contributor.authorNELSON, Pen_US
dc.date.accessioned2019-04-02T05:59:13Z-
dc.date.available2019-04-02T05:59:13Z-
dc.date.issued1995-10-01en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/0096-3003(94)00179-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/149129-
dc.description.abstractWe consider the iterative solutions of a certain class of algebraic matrix Riccati equations with two parameters, c(0 less than or equal to c less than or equal to 1) and alpha(0 less than or equal to alpha less than or equal to 1). Here c denotes the fraction of scattering per collision and alpha is an angular shift. Equations of this class are induced via invariant imbedding and the shifted Gauss-Lengendre quadrature formula from a ''simple transport model.'' The purpose of this paper is to describe the effects of the parameters c, alpha, and N (the dimension of the matrix) on the convergence rates of the iterative solutions. We also compare the convergence rates of those iterative methods.en_US
dc.language.isoen_USen_US
dc.titleCONVERGENCE-RATES OF ITERATIVE SOLUTIONS OF ALGEBRAIC MATRIX RICCATI-EQUATIONSen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/0096-3003(94)00179-8en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume72en_US
dc.citation.spage125en_US
dc.citation.epage142en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1995RT88400003en_US
dc.citation.woscount0en_US
Appears in Collections:Articles