Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, JCen_US
dc.date.accessioned2019-04-02T05:59:36Z-
dc.date.available2019-04-02T05:59:36Z-
dc.date.issued1996-06-01en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://dx.doi.org/10.1016/0031-3203(96)00130-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/149188-
dc.description.abstractThis paper concentrates on the fold number detection problem for the shapes with monotonic radii. The proposed method is extremely simple. Two monotonicity conditions are derived to ensure that the smallest positive integer l making integral integral((r,0)is an element of S) r(2) e(il theta) dr d theta nonzero is exactly the fold number of the given shape S. The fold numbers of regular polygons, roses, bolt nuts, and other kinds of shapes discussed in the present paper, can therefore be detected quite easily. Note especially that the proposed method uses no matching procedure, a procedure essential in many reported methods. Theoretical properties, mathematical proofs, illustrative figures, and experimental results, are all included in this paper. (C) 1996 Pattern Recognition Society. Published by Elsevier Science Ltd.en_US
dc.language.isoen_USen_US
dc.subjectrotational symmetryen_US
dc.subjectmirror symmetryen_US
dc.subjectmonotonicityen_US
dc.subjectrotation-matchingen_US
dc.subjectregular polygonsen_US
dc.subjectbolt nutsen_US
dc.subjectrosesen_US
dc.titleA simplified fold number detector for shapes with monotonic radiien_US
dc.typeArticleen_US
dc.identifier.doi10.1016/0031-3203(96)00130-6en_US
dc.identifier.journalPATTERN RECOGNITIONen_US
dc.citation.volume29en_US
dc.citation.spage997en_US
dc.citation.epage1005en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1996UN18400008en_US
dc.citation.woscount5en_US
Appears in Collections:Articles