完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Ding, Aidong Adam | en_US |
dc.contributor.author | Wang, Weijing | en_US |
dc.date.accessioned | 2019-04-02T06:01:07Z | - |
dc.date.available | 2019-04-02T06:01:07Z | - |
dc.date.issued | 2007-01-01 | en_US |
dc.identifier.issn | 0361-0926 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1080/03610920701386901 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/149324 | - |
dc.description.abstract | Copula models describe the dependence structure of two random variables separately from their marginal distributions and hence are particularly useful in studying the association for bivariate survival data. Semiparametric inference for bivariate survival data based on copula models has been studied for various types of data, including complete data, right-censored data, and current status data. This article discusses the boundary effect on these inference procedures, a problem that has been neglected in the previous literature. Specifically, asymptotic distribution of the association estimator on the boundary of parameter space is derived for one-dimensional copula models. The boundary properties are applied to test independence and to study the estimation efficiency. Simulation study is conducted for the bivariate right-censored data and current status data. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | copula model | en_US |
dc.subject | current status data | en_US |
dc.subject | independence test | en_US |
dc.subject | right-censored data | en_US |
dc.subject | semiparametric estimation | en_US |
dc.title | Inference for bivariate survival data by copula models adjusted for the boundary effect | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/03610920701386901 | en_US |
dc.identifier.journal | COMMUNICATIONS IN STATISTICS-THEORY AND METHODS | en_US |
dc.citation.volume | 36 | en_US |
dc.citation.spage | 2927 | en_US |
dc.citation.epage | 2936 | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
dc.contributor.department | Institute of Statistics | en_US |
dc.identifier.wosnumber | WOS:000251876400043 | en_US |
dc.citation.woscount | 1 | en_US |
顯示於類別: | 期刊論文 |