完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFerng, WRen_US
dc.contributor.authorLin, KYen_US
dc.contributor.authorLin, WWen_US
dc.date.accessioned2019-04-02T06:00:28Z-
dc.date.available2019-04-02T06:00:28Z-
dc.date.issued1997-02-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0024-3795(96)00670-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/149426-
dc.description.abstractIn this article, we present a novel algorithm, named nonsymmetric K---Lanczos algorithm, for computing a few extreme eigenvalues of the generalized eigenvalue problem Mx = lambda Lx, where the matrices M and L have the so-called K-+/--structures. We demonstrate a K---tridiagonalization procedure preserves the K-+/--structures. An error bound for the extreme K---Ritz value obtained from this new algorithm is presented. When compared with the class nonsymmetric Lanczos approach, this method has the same order of computational complexity and can be viewed as a special 2 x 2-block nonsymmetric Lanczos algorithm. Numerical experiments with randomly generated K---matrices show that our algorithm converges faster and more accurate than the nonsymmetric Lanczos algorithm. (C) Elsevier Science Inc., 1997en_US
dc.language.isoen_USen_US
dc.titleA novel nonsymmetric K_-Lanczos algorithm for the generalized nonsymmetric K_-eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0024-3795(96)00670-2en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume252en_US
dc.citation.spage81en_US
dc.citation.epage105en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997WD48200006en_US
dc.citation.woscount1en_US
顯示於類別:期刊論文