完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Chia-Hungen_US
dc.contributor.authorSun, Yi-Mingen_US
dc.contributor.authorChang, Wen-Chien_US
dc.contributor.authorChiang-Hsieh, Pei-Yunen_US
dc.contributor.authorLee, Tzong-Yien_US
dc.contributor.authorTsai, Wei-Chihen_US
dc.contributor.authorHorng, Jorng-Tzongen_US
dc.contributor.authorTsou, Ann-Pingen_US
dc.contributor.authorHuang, Hsien-Daen_US
dc.date.accessioned2014-12-08T15:21:02Z-
dc.date.available2014-12-08T15:21:02Z-
dc.date.issued2011-11-01en_US
dc.identifier.issn0305-1048en_US
dc.identifier.urihttp://dx.doi.org/10.1093/nar/gkr604en_US
dc.identifier.urihttp://hdl.handle.net/11536/14947-
dc.description.abstractMicroRNAs (miRNAs) are critical small non-coding RNAs that regulate gene expression by hybridizing to the 3'-untranslated regions (3'-UTR) of target mRNAs, subsequently controlling diverse biological processes at post-transcriptional level. How miRNA genes are regulated receives considerable attention because it directly affects miRNA-mediated gene regulatory networks. Although numerous prediction models were developed for identifying miRNA promoters or transcriptional start sites (TSSs), most of them lack experimental validation and are inadequate to elucidate relationships between miRNA genes and transcription factors (TFs). Here, we integrate three experimental datasets, including cap analysis of gene expression (CAGE) tags, TSS Seq libraries and H3K4me3 chromatin signature derived from high-throughput sequencing analysis of gene initiation, to provide direct evidence of miRNA TSSs, thus establishing an experimental-based resource of human miRNA TSSs, named miRStart. Moreover, a machine-learning-based Support Vector Machine (SVM) model is developed to systematically identify representative TSSs for each miRNA gene. Finally, to demonstrate the effectiveness of the proposed resource, an important human intergenic miRNA, hsa-miR-122, is selected to experimentally validate putative TSS owing to its high expression in a normal liver. In conclusion, this work successfully identified 847 human miRNA TSSs (292 of them are clustered to 70 TSSs of miRNA clusters) based on the utilization of high-throughput sequencing data from TSS-relevant experiments, and establish a valuable resource for biologists in advanced research in miRNA-mediated regulatory networks.en_US
dc.language.isoen_USen_US
dc.titleIdentifying transcriptional start sites of human microRNAs based on high-throughput sequencing dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/nar/gkr604en_US
dc.identifier.journalNUCLEIC ACIDS RESEARCHen_US
dc.citation.volume39en_US
dc.citation.issue21en_US
dc.citation.spage9345en_US
dc.citation.epage9356en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000297375700032-
dc.citation.woscount47-
顯示於類別:期刊論文


文件中的檔案:

  1. 000297375700032.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。