Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, JJen_US
dc.contributor.authorChang, GJen_US
dc.contributor.authorHuang, KCen_US
dc.date.accessioned2019-04-02T05:59:46Z-
dc.date.available2019-04-02T05:59:46Z-
dc.date.issued1997-08-01en_US
dc.identifier.issn0364-9024en_US
dc.identifier.urihttp://dx.doi.org/10.1002/(SICI)1097-0118(199708)25:4<287::AID-JGT6>3.0.CO;2-Gen_US
dc.identifier.urihttp://hdl.handle.net/11536/149584-
dc.description.abstractSuppose D is a subset of all positive integers. The distance graph G(Z, D) with distance set D is the graph with vertex set Z, and two vertices x and y are adjacent if and only if \x - y\ is an element of D. This paper studies the chromatic number chi(Z, D) of G(Z, D). In particular, we prove that chi(Z,D) less than or equal to \D\ + 1 when \D\ is finite. Exact values of chi(G, D) are also determined for some D with \D\ = 3. (C) 1997 John Wiley & Sons, Inc.en_US
dc.language.isoen_USen_US
dc.subjectdistance graphen_US
dc.subjectvertexen_US
dc.subjectcoloringen_US
dc.subjectchromatic numberen_US
dc.titleIntegral distance graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/(SICI)1097-0118(199708)25:4<287::AID-JGT6>3.0.CO;2-Gen_US
dc.identifier.journalJOURNAL OF GRAPH THEORYen_US
dc.citation.volume25en_US
dc.citation.spage287en_US
dc.citation.epage294en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997XM16600006en_US
dc.citation.woscount29en_US
Appears in Collections:Articles