Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, JJ | en_US |
dc.contributor.author | Chang, GJ | en_US |
dc.contributor.author | Huang, KC | en_US |
dc.date.accessioned | 2019-04-02T05:59:46Z | - |
dc.date.available | 2019-04-02T05:59:46Z | - |
dc.date.issued | 1997-08-01 | en_US |
dc.identifier.issn | 0364-9024 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/(SICI)1097-0118(199708)25:4<287::AID-JGT6>3.0.CO;2-G | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/149584 | - |
dc.description.abstract | Suppose D is a subset of all positive integers. The distance graph G(Z, D) with distance set D is the graph with vertex set Z, and two vertices x and y are adjacent if and only if \x - y\ is an element of D. This paper studies the chromatic number chi(Z, D) of G(Z, D). In particular, we prove that chi(Z,D) less than or equal to \D\ + 1 when \D\ is finite. Exact values of chi(G, D) are also determined for some D with \D\ = 3. (C) 1997 John Wiley & Sons, Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | distance graph | en_US |
dc.subject | vertex | en_US |
dc.subject | coloring | en_US |
dc.subject | chromatic number | en_US |
dc.title | Integral distance graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/(SICI)1097-0118(199708)25:4<287::AID-JGT6>3.0.CO;2-G | en_US |
dc.identifier.journal | JOURNAL OF GRAPH THEORY | en_US |
dc.citation.volume | 25 | en_US |
dc.citation.spage | 287 | en_US |
dc.citation.epage | 294 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:A1997XM16600006 | en_US |
dc.citation.woscount | 29 | en_US |
Appears in Collections: | Articles |