Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuah, MKen_US
dc.date.accessioned2019-04-02T05:59:45Z-
dc.date.available2019-04-02T05:59:45Z-
dc.date.issued1997-03-01en_US
dc.identifier.issn0022-2518en_US
dc.identifier.urihttp://hdl.handle.net/11536/149588-
dc.description.abstractLet G be a complex semi-simple Lie group. The generalized Borel-Weil theorem computes the cohomology of a compact homogeneous G-space with coefficient in homogeneous line bundle. In this paper, we give an analogous statement via Dolbeault cohomology of the non-compact space G/(P,P) for P subset of G a parabolic subgroup, and (P,P) the commutator subgroup.en_US
dc.language.isoen_USen_US
dc.titleThe generalized Borel-Weil theorem and cohomology of G/(P,P)en_US
dc.typeArticleen_US
dc.identifier.journalINDIANA UNIVERSITY MATHEMATICS JOURNALen_US
dc.citation.volume46en_US
dc.citation.spage117en_US
dc.citation.epage131en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997XM55400004en_US
dc.citation.woscount3en_US
Appears in Collections:Articles