Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chuah, MK | en_US |
dc.date.accessioned | 2019-04-02T05:59:45Z | - |
dc.date.available | 2019-04-02T05:59:45Z | - |
dc.date.issued | 1997-03-01 | en_US |
dc.identifier.issn | 0022-2518 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/149588 | - |
dc.description.abstract | Let G be a complex semi-simple Lie group. The generalized Borel-Weil theorem computes the cohomology of a compact homogeneous G-space with coefficient in homogeneous line bundle. In this paper, we give an analogous statement via Dolbeault cohomology of the non-compact space G/(P,P) for P subset of G a parabolic subgroup, and (P,P) the commutator subgroup. | en_US |
dc.language.iso | en_US | en_US |
dc.title | The generalized Borel-Weil theorem and cohomology of G/(P,P) | en_US |
dc.type | Article | en_US |
dc.identifier.journal | INDIANA UNIVERSITY MATHEMATICS JOURNAL | en_US |
dc.citation.volume | 46 | en_US |
dc.citation.spage | 117 | en_US |
dc.citation.epage | 131 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:A1997XM55400004 | en_US |
dc.citation.woscount | 3 | en_US |
Appears in Collections: | Articles |