Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, GJen_US
dc.contributor.authorHwang, FKen_US
dc.date.accessioned2019-04-02T05:59:49Z-
dc.date.available2019-04-02T05:59:49Z-
dc.date.issued1997-09-01en_US
dc.identifier.issn0028-3045en_US
dc.identifier.urihttp://dx.doi.org/10.1002/(SICI)1097-0037(199709)30:2<75::AID-NET1>3.0.CO;2-Hen_US
dc.identifier.urihttp://hdl.handle.net/11536/149616-
dc.description.abstractWe consider the problem of partitioning the vertex-set of a tree to p parts to minimize a cost function. Since the number of partitions is exponential in the number of vertices, it is helpful to identify small classes of partitions which also contain optimal partitions. Two such classes, called consecutive partitions and nested partitions, have been well studied for the set partition problem, which is a special case of the tree-partition problem when the tree is a path. We give conditions on the optimality of these classes on tree partitions and also extend our results to tree networks. (C) 1997 John Wiley & Sons, Inc.en_US
dc.language.isoen_USen_US
dc.titleOptimality of consecutive and nested tree partitionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/(SICI)1097-0037(199709)30:2<75::AID-NET1>3.0.CO;2-Hen_US
dc.identifier.journalNETWORKSen_US
dc.citation.volume30en_US
dc.citation.spage75en_US
dc.citation.epage80en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997XR26500001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles