完整後設資料紀錄
DC 欄位語言
dc.contributor.authorXu, S. C.en_US
dc.contributor.authorIrle, S.en_US
dc.contributor.authorMusaev, D. G.en_US
dc.contributor.authorLin, M. C.en_US
dc.date.accessioned2019-04-02T05:58:45Z-
dc.date.available2019-04-02T05:58:45Z-
dc.date.issued2009-10-29en_US
dc.identifier.issn1932-7447en_US
dc.identifier.urihttp://dx.doi.org/10.1021/jp9056994en_US
dc.identifier.urihttp://hdl.handle.net/11536/149842-
dc.description.abstractWe present reaction pathways for adsorption of CO and CO2 molecules in the vicinity of monovacancy defects on graphite (0001) based on B3LYP and dispersion-augmented density-functional tight-binding (DFTB-D) studies of the potential energy surfaces (PES) of these reactions. To model the graphite (0001) monovacancy defects, finite-size molecular model systems up to the size of dicircumcoronene (C95H24) were employed. We find that the CO molecule reacts readily with the monovacancy defects and partially "heals" the carbon hexagon network leading to the formation of a stable epoxide, whereas CO2 oxidizes the defect via a dissociative adsorption pathway following CO elimination. We predict reaction rate constants in the temperature range between 300 and 3000 K using Rice-Ramsperger-Kassel-Marcus theory. Quantum chemical molecular dynamics simulations at 3000 K based on on-the-fly DFTB-D energies and gradients-support the results of our PES studies.en_US
dc.language.isoen_USen_US
dc.titleQuantum Chemical Prediction of Pathways; and Rate Constants for Reactions of CO and CO2 with Vacancy Defects on Graphite (0001) Surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/jp9056994en_US
dc.identifier.journalJOURNAL OF PHYSICAL CHEMISTRY Cen_US
dc.citation.volume113en_US
dc.citation.spage18772en_US
dc.citation.epage18777en_US
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000270911500049en_US
dc.citation.woscount20en_US
顯示於類別:期刊論文