Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Guan-Yuen_US
dc.contributor.authorSaloff-Coste, Laurenten_US
dc.date.accessioned2019-04-02T05:58:55Z-
dc.date.available2019-04-02T05:58:55Z-
dc.date.issued2010-04-01en_US
dc.identifier.issn0022-1236en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jfa.2009.10.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/149888-
dc.description.abstractWe consider the problem of proving the existence of an L-2-cutoff for families of ergodic Markov processes started from given initial distributions and associated with reversible (more, generally, normal) Markov semigroups. This includes classical examples such as families of finite reversible Markov chains and Brownian motion on compact Riemannian manifolds. We give conditions that are equivalent to the existence of an L-2-cutoff and describe the L-2-cutoff time in terms of the spectral decomposition. This is illustrated by several examples including the Ehrenfest process and the biased (p, q)-random walk on the non-negative integers, both started froth an arbitrary point. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectL-2-cutoffen_US
dc.subjectMarkov semigroupsen_US
dc.subjectNormal operatorsen_US
dc.titleThe L-2-cutoff for reversible Markov processesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jfa.2009.10.017en_US
dc.identifier.journalJOURNAL OF FUNCTIONAL ANALYSISen_US
dc.citation.volume258en_US
dc.citation.spage2246en_US
dc.citation.epage2315en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000274216300004en_US
dc.citation.woscount8en_US
Appears in Collections:Articles