完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Hsiuyingen_US
dc.contributor.authorLi, Wen-Hsiungen_US
dc.date.accessioned2019-04-02T05:58:57Z-
dc.date.available2019-04-02T05:58:57Z-
dc.date.issued2009-08-21en_US
dc.identifier.issn0022-5193en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jtbi.2009.05.007en_US
dc.identifier.urihttp://hdl.handle.net/11536/149897-
dc.description.abstractMicroRNAs (miRNAs) are short noncoding RNAs involved in post-transcriptional gene regulation via binding to mRNAs. Studies show that in a multicellular organism microRNAs (miRNAs) downregulate a large number of target mRNAs. However, predicting the target genes of a miRNA is challenging. Microarray expression pro. ling has been proposed as a complementary method to increase the confidence of miRNA target prediction, but it can become computationally costly or even intractable when many miRNAs and their effects across multiple tissues are to be considered. Here, we propose a statistical method, the relative R-2 method, to find high-confidence targets among the set of potential targets predicted by a computational method such as TargetScanS or by microarray analysis, when expression data of both miRNAs and mRNAs are available for multiple tissues. Applying this method to existing data, we obtain many high-confidence targets in mouse. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectMicroRNAen_US
dc.subjectMicroarrayen_US
dc.subjectRegression modelen_US
dc.subjectTargetScanSen_US
dc.titleIncreasing MicroRNA target prediction confidence by the relative R-2 methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jtbi.2009.05.007en_US
dc.identifier.journalJOURNAL OF THEORETICAL BIOLOGYen_US
dc.citation.volume259en_US
dc.citation.spage793en_US
dc.citation.epage798en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000274798100013en_US
dc.citation.woscount17en_US
顯示於類別:期刊論文