Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Ming-Chihen_US
dc.contributor.authorTseng, Yu-Hauen_US
dc.contributor.authorHuang, Huaxiongen_US
dc.date.accessioned2019-04-02T05:58:18Z-
dc.date.available2019-04-02T05:58:18Z-
dc.date.issued2010-10-01en_US
dc.identifier.issn1815-2406en_US
dc.identifier.urihttp://dx.doi.org/10.4208/cicp.281009.120210aen_US
dc.identifier.urihttp://hdl.handle.net/11536/150017-
dc.description.abstractIn this paper, we present an immersed boundary method for simulating moving contact lines with surfactant. The governing equations are the incompressible Navier-Stokes equations with the usual mixture of Eulerian fluid variables and Lagrangian interfacial markers. The immersed boundary force has two components: one from the nonhomogeneous surface tension determined by the distribution of surfactant along the fluid interface, and the other from unbalanced Young's force at the moving contact lines. An artificial tangential velocity has been added to the Lagrangian markers to ensure that the markers are uniformly distributed at all times. The corresponding modified surfactant equation is solved in a way such that the total surfactant mass is conserved. Numerical experiments including convergence analysis are carefully conducted. The effect of the surfactant on the motion of hydrophilic and hydrophobic drops are investigated in detail.en_US
dc.language.isoen_USen_US
dc.subjectImmersed boundary methoden_US
dc.subjectinterfacial flowen_US
dc.subjectNavier-Stokes equationsen_US
dc.subjectsurfactanten_US
dc.subjectmoving contact lineen_US
dc.subjecthydrophilic dropen_US
dc.subjecthydrophobic dropen_US
dc.subjectwettingen_US
dc.titleNumerical Simulation of Moving Contact Lines with Surfactant by Immersed Boundary Methoden_US
dc.typeArticleen_US
dc.identifier.doi10.4208/cicp.281009.120210aen_US
dc.identifier.journalCOMMUNICATIONS IN COMPUTATIONAL PHYSICSen_US
dc.citation.volume8en_US
dc.citation.spage735en_US
dc.citation.epage757en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000281405100002en_US
dc.citation.woscount22en_US
Appears in Collections:Articles