Full metadata record
DC FieldValueLanguage
dc.contributor.authorZheng, Xiaoen_US
dc.contributor.authorChen, GuanHuaen_US
dc.contributor.authorMo, Yanen_US
dc.contributor.authorKoo, SiuKongen_US
dc.contributor.authorTian, Hengen_US
dc.contributor.authorYam, ChiYungen_US
dc.contributor.authorYan, YiJingen_US
dc.date.accessioned2019-04-02T05:58:12Z-
dc.date.available2019-04-02T05:58:12Z-
dc.date.issued2010-09-21en_US
dc.identifier.issn0021-9606en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.3475566en_US
dc.identifier.urihttp://hdl.handle.net/11536/150039-
dc.description.abstractBased on our earlier works [X. Zheng , Phys. Rev. B 75, 195127 (2007); J. S. Jin , J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages. (c) 2010 American Institute of Physics. [doi:10.1063/1.3475566]en_US
dc.language.isoen_USen_US
dc.subjectcarbon nanotubesen_US
dc.subjectdensity functional theoryen_US
dc.subjectnanoelectronicsen_US
dc.subjectnanotube devicesen_US
dc.titleTime-dependent density functional theory for quantum transporten_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.3475566en_US
dc.identifier.journalJOURNAL OF CHEMICAL PHYSICSen_US
dc.citation.volume133en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000282047500005en_US
dc.citation.woscount67en_US
Appears in Collections:Articles