完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShih, Yuan-Kangen_US
dc.contributor.authorChuang, Hui-Chunen_US
dc.contributor.authorKao, Shin-Shinen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.date.accessioned2019-04-02T05:58:35Z-
dc.date.available2019-04-02T05:58:35Z-
dc.date.issued2010-11-01en_US
dc.identifier.issn0920-8542en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11227-009-0317-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/150049-
dc.description.abstractThe hypercube family Q(n) is one of the most well-known interconnection networks in parallel computers. With Q(n) , dual-cube networks, denoted by DC(n) , was introduced and shown to be a (n+1)-regular, vertex symmetric graph with some fault-tolerant Hamiltonian properties. In addition, DC(n)'s are shown to be superior to Q(n)'s in many aspects. In this article, we will prove that the n-dimensional dual-cube DC(n) contains n+1 mutually independent Hamiltonian cycles for n >= 2. More specifically, let upsilon(i) is an element of V(DC (n) ) for 0 <= i <= |V(DC(n))|-1 and let (upsilon(0,) upsilon(1,.....,) upsilon broken vertical bar v(DC(n))broken vertical bar-1, upsilon(0)) be a Hamiltonian cycle of DC(n) . We prove that DC(n) contains n+1 Hamiltonian cycles of the form (upsilon(0,) upsilon(k)(1), .....,upsilon(k)vertical bar v (DC(n))vertical bar-1, upsilon(0)) for 0 <= k <= n, in which v(i)(k) not equal v(i)(k') whenever k not equal k'. The result is optimal since each vertex of DC(n) has only n+1 neighbors.en_US
dc.language.isoen_USen_US
dc.subjectHypercubeen_US
dc.subjectDual-cubeen_US
dc.subjectHamiltonian cycleen_US
dc.subjectHamiltonian connecteden_US
dc.subjectMutually independenten_US
dc.titleMutually independent Hamiltonian cycles in dual-cubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11227-009-0317-2en_US
dc.identifier.journalJOURNAL OF SUPERCOMPUTINGen_US
dc.citation.volume54en_US
dc.citation.spage239en_US
dc.citation.epage251en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000282225700006en_US
dc.citation.woscount11en_US
顯示於類別:期刊論文