Full metadata record
DC FieldValueLanguage
dc.contributor.authorShieh, Min-Zhengen_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.date.accessioned2019-04-02T06:00:28Z-
dc.date.available2019-04-02T06:00:28Z-
dc.date.issued2010-11-01en_US
dc.identifier.issn0018-9448en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TIT.2010.2069253en_US
dc.identifier.urihttp://hdl.handle.net/11536/150114-
dc.description.abstractA frequency permutation array (FPA) of length n = m lambda and distance d is a set of permutations on a multiset over m symbols, where each symbol appears exactly lambda times and the distance between any two elements in the array is at least d. FPA generalizes the notion of permutation array. In this paper, under the Chebyshev distance, we first prove lower and upper bounds on the size of FPA. Then we give several constructions of FPAs, and some of them come with efficient encoding and decoding capabilities. Moreover, we show one of our designs is locally decodable, i.e., we can decode a message bit by reading at most lambda + 1 symbols, which has an interesting application to private information retrieval.en_US
dc.language.isoen_USen_US
dc.subjectChebyshev distanceen_US
dc.subjectfrequency permutation array (FPA)en_US
dc.subjectlocally decodable codeen_US
dc.subjectpermanenten_US
dc.subjectpermutation array (PA)en_US
dc.titleDecoding Frequency Permutation Arrays Under Chebyshev Distanceen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIT.2010.2069253en_US
dc.identifier.journalIEEE TRANSACTIONS ON INFORMATION THEORYen_US
dc.citation.volume56en_US
dc.citation.spage5730en_US
dc.citation.epage5737en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000283449000024en_US
dc.citation.woscount21en_US
Appears in Collections:Articles