標題: Ab Initio Chemical Kinetics for SiH3 Reactions with SixH2x+2 (x=1-4)
作者: Raghunath, P.
Lin, M. C.
應用化學系分子科學碩博班
Institute of Molecular science
公開日期: 30-十二月-2010
摘要: Gas-phase kinetics and mechanisms of SiH3 reactions with SiH4, Si2H6, Si3H8, and Si4H10, processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH3 reactions with these silanes occur by H abstraction, leading to the formation of SiH4 + SixH2x+1(silanyl) radicals. For both Si3H8 and n-Si4H10 reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH4 + s-Si3H7 and SiH4 + s-Si4H9, respectively. In the i-Si4H10 reaction, tertiary Si-H abstraction, has the lowest barrier producing SiH4 + t-Si4H9. In addition, direct SiH3-for-X substitution reactions forming Si2H6 + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH3 reactions with the analogous CH3 reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si4H10 isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.
URI: http://dx.doi.org/10.1021/jp1082196
http://hdl.handle.net/11536/150212
ISSN: 1089-5639
DOI: 10.1021/jp1082196
期刊: JOURNAL OF PHYSICAL CHEMISTRY A
Volume: 114
起始頁: 13353
結束頁: 13361
顯示於類別:期刊論文